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Transverse instability of avalanches in granular flows down an incline
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Avalanche experiments on an erodible substrate are analyzed using the “partial fluidization” model of dense
granular flows. The model identifies a family of propagating solitonlike avalanches with shape and velocity
controlled by the inclination angle and the depth of the substrate. At high inclination angles, the solitons
display a transverse instability, followed by coarsening and fingering similar to recent experimental observa-
tion. A primary cause for the transverse instability is directly related to the dependence of the soliton velocity

on the granular mass trapped in the avalanche.
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Granular deposit instabilities are linked with catastrophic
events such as avalanches, mud flows, and land slides. Re-
lated phenomena also occur below sea level. Risk modeling
of these unstable matter waves is hindered by the lack of
conceptual clarity, since the conditions triggering avalanches
and the rheology of the particulate flows are poorly under-
stood. While extensive laboratory-scale experiments on dry
and submerged granular materials flowing on a rough in-
clined plane [1-6] have brought new perspectives for the
elaboration of reliable constitutive relations, many open is-
sues still remain such as avalanche propagation on erodible
substrates (for a recent geophysical applications see [7]). It
has been shown experimentally that families of localized un-
stable avalanche waves can be triggered in the bistability
domain of a phase diagram [3]. The shape of localized drop-
letlike waves was shown to depend strongly on the nature of
the granular material used [5].

Recent avalanche experiments on erodible layers per-
formed both in air and under water (see [4]), though strongly
differing in spatial and time scales involved, display a strik-
ing common feature: solitary quasi-one-dimensional waves
exhibiting transverse instability at higher inclination angles.
The instability further develops into a fingering pattern via a
coarsening scenario. This phenomenology, likely to be com-
mon to many natural erosion (deposition) processes, lacks a
clear physical explanation. From a theoretical perspective, a
model of partially fluidized dense granular flows was devel-
oped to couple a phenomenological description of a solid
(fluid) transition with hydrodynamic transport equations. It
reproduces many features found experimentally such as
metastability of a granular deposit, triangular downhill, and
balloon-type uphill avalanches, etc. [8,9]. The model was
later calibrated with molecular dynamics simulations [10].
The partial fluidization approach has an advantage compared
to two-phase models such as Bouchaud, Cates, Ravi,
Prakash, and Edwards (BCRE) [11], since in thin layers there
is no clearcut distinction between rolling and static granular
phases. The BCRE-type equations can be derived from the
partial fluidization model for thick layers [8,9].

In this paper, the partial fluidization model is applied to
avalanches on a thin erodible sediment layer. A set of equa-
tions describing the dynamics of fully eroding waves is de-
rived, and a family of soliton solutions propagating downhill
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is obtained. The velocity and shape selection of these soli-
tons is investigated as well as the existence of a linear trans-
verse instability. The primary cause of the instability is iden-
tified with the dependence of soliton velocity on its trapped
mass. A numerical study is conducted to follow the nonlinear
evolution of the avalanche fronts. All these features are dis-
cussed in the context of the experimental findings of Mal-
loggi et al. [4].

According to the partial fluidization theory [8], the ratio
of the static part of the shear stress to the fluid part of the full
stress tensor is controlled by an order parameter (OP) p,
which is scaled in such a way that in a granular solid p=1
and in the fully developed flow (granular liquid) p—0. At
the “microscopic level” OP is defined as a fraction of the
number of persistent particle contacts to the total number of
contacts. Due to the strong dissipation in dense granular
flows, p is assumed to obey purely relaxational dynamics
controlled by the Ginzburg-Landau equation for a generic
first order phase transition,

Dp
TPE=ziV2p——. (1)

Here, Tp,lp%d are the OP characteristic time and length
scales, and d is the grain size. F(p, 8)=—[fp(1-p)(p-S)dp
is a “free-energy density,” which is postulated to have two
local minima at p=1 (solid phase) and p=0 (fluid phase) to
account for the bistability near the solid-fluid transition, the
polynomial form is chosen for simplicity of analysis. The
relative stability of the two phases is controlled by the pa-
rameter o, playing the role of “temperature” for equilibrium
phase transitions, which is determined by the stress tensor
T,.,- The simplest assumption consistent with the Mohr-
Coulomb yield criterion is to take & as a function of ¢
=max|0,,,/ 7,,|, where the maximum is sought over all pos-
sible orthogonal directions m,n. In the following, ¢ is de-
fined as 5=(¢2—¢S)/ (¢%—¢3), where ¢, are tangents of
dynamic and static repose angles.

For thin layers on an inclined plane, Eq. (1) can be sim-
plified by fixing the structure of the OP in the z direction (z
is perpendicular to the bottom, x is directed down the chute,
and y is directed in the vorticity direction). For the chute
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inclination angles ¢ close to the static repose angle,
the structure of the most unstable mode is given by
p=1-=Assin(mwz/2h), h is the local layer thickness, A=const.
Assuming slow dependence of A, on x,y,t (valid close to
the instability threshold), we derive from Eq. (1) and the
mass conservation law two equations governing the evolu-
tion of h and A; variables x,y, h, and ¢ are normalized by
l,,7, correspondingly (see [8] for details),

h Jh*A

O e VI=-a" SV (RPAV R 2
P J=—a— ts ( ). 2)
A 82-9) , 3

—=NA+ VAL ——— A=A, 3
ot oA+ " 37 4 ®)

where V2= (92+&2 J is the flux of grains, Ng=8— 1 —2/4h>,

the control parameter & assumes the form &(¢)=[(tan ¢)>
2(m-8)
— o)/ (1= b)), a~——gml,sin ¢ is the dimensionless

transport coefficient, v is the shear kinematic viscosity, ¢
=tan @. Assuming that the slope of the layers tan ¢ is close
to the chute slope ¢, we expand the control parameter &
=~ 8+ Bh,, ,=8p), and B~ 1.5-3 depending on the value
of @ (see [8,9] for details). The last term in Eq. (2) is due to
the local change of ¢, is obtained from expansion ¢= @
+h,, and is responsible for the slope saturation of the ava-
lanche [9].

In the coordinate system comoving with the velocity V,
Egs. (2) and (3) assume the form

oh oh*A
—=Vih-a +—V(h3AVh) (4)
ot ox o)

JA 8(2-6 3

o Va,A +NA + VA + gAZ - ZA3. (5)

To find stationary solutions of Egs. (4) and (5), we numeri-
cally solved one-dimensional Egs. (2) and (3) in periodic
boundary conditions. The studies revealed a one-parametric
family of localized (solitons) solutions, see Fig. 1,

A(e,t)=A(x—-Vt), h(x,t)=h(x-Vi). (6)

Here, the boundary conditions take a form & — hy, A— 0 for
x— =+, where h, is the asymptotic height. The one-
dimensional steady-state soliton solution (6) satisfies

a.h
V(h=hy) = ah*A<1— ¢), (7)
—V—A—)\A PA + 8(2 5)A %A3. (8)

The solutions can be parametrized by the “trapped mass” m
carried by the soliton, i.e., the area above hq,
m=["_(h—hy)dx. The main features are (a) the velocity V is
an increasing function of m, see the inset of Fig. 1(b); (b) the
family of admissible solutions for a propagative solitary
wave terminates at m=m, and V=V,=V(m_); (c) the critical
mass m,. decreases with the increase in «. The dependence of
V vs m is qualitatively consistent with the experimental data,
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FIG. 1. (Color online) & (a) and A (b) for various values of m
and «. The solid line is for m=147.7, V=2.72; the dashed line is for
m=211, V=3.12, for 6=1, a=0.08, B=2; the dotted-dashed line is
for a=0.025, 5=1.15, m=62, V=0.86. Inset to (a): Representative
height profiles for avalanches in 300 um sand, ®=32.3° (solid
line), and 500 wm glass beads, $=22° (dashed line), [4]. Inset to
(b): V vs m (solid line), diamonds depict data for sand avalanches,
$=32.3°.

see the inset to Fig. 1(b). The shape of the solutions is sen-
sitive to a: for large «, the solution has a well-pronounced
shock-wave like shape, Fig. 1, with the height of the crest
h,.c several times larger than h,. The relative height of the
crest decreases for «— 0, see Fig. 1. The results are consis-
tent with the shape of sand (large @) and glass bead
(a@—0) avalanches, see the inset of Fig. 1(a).

To understand the transverse instability, we performed
numerical linear stability analysis of solitons with respect to
transverse modulation of the wave-number g. Figure 2 shows
the growth rate of linear perturbations \(g) obtained from
Egs. (2) and (3), linearized near the one-dimensional solution
(6). Thus, we identify a long-wave instability scenario with
an optimal wave-number ¢". Despite a strong scatter, the
experimental data obtained with a similar forced modulation
technique is consistent with this theoretical result. The inset
to Fig. 2 shows the dependence of optimal wave-number g"
vs a, obtained by numerical linear stability analysis of the
soliton solution. The instability apparently ceases to exist
below some a<«,.

To obtain insights into the mechanisms of fransverse in-
stability, we focus on the soliton solution with the slowly
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FIG. 2. (Color online) \(g) vs g for 6=1.15, @=0.08, and m
=102, g is scaled by ¢", and the growth rate by \"=\(¢"). Solid
line: A(g) obtained by numerical stability analysis of one-
dimensional solution Eq. (6). The dashed line is the solution of Eq.
(13). Symbols depict experimental data for sand avalanches. Inset:
optimal wave number of ¢” vs « for §=1.15.

varying position xq(y,#): A(x,1)=A[x—xo(t,y)], h(x,1)=h[x
—xo(t,y)]. Substitution to Eq. (4) and integration over x
yields

dm = V(m)[h* =™ (m)] = {1050 + Lodim, )

where [, ,=const is defined as
o=t | @rabas - . | amapa

Here h*=h(x— =) is the height of the deposit layer ahead of
the front, and A~ =h(x— —=) is the height behind the front,
see Fig. 1(a). While the value of A" is prescribed by the
initial sediment height, the value of A~ behind the front is
determined by the velocity (or mass) of the front. For the
steady-state solution, h*=h"=h,. For the slowly evolving so-
lution, the difference between i* and &~ may be small but is
important for the stability analysis. These terms are also nec-
essary to describe experimentally observed initial accelera-
tion (slowdown) of the avalanches. Substituting A into Eq.
(3) and performing orthogonality conditions we obtain

dxg=V(m) + r?fxo. (10)

There are also higher-order terms in Eq. (10), which we ne-
glect for simplicity. To see the onset of the instability, we
keep only the leading terms in Egs. (9) and (10), using
V(m) = V(mgy)+V,,(m—my), and mi=m—my<<my,

Gy = — miti = £, G0 + Lo,

0rx0 = Vmﬁ/i + Oix()» (1 1)

where mg=const is the steady-state mass of the soliton, and
7=V(my)d,h~. Seeking a solution in the form m,x,
~exp(\t+iqy), q is the transverse modulation wave number;
for the most unstable mode, we obtain from Eq. (11) the
growth rate A
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Expanding A for ¢—0 we obtain A\=23(2V,{/7—1)¢*
+0(g%). The instability occurs if V,,Z,/7—1/2>0. Substitut-
ing 7 and using V,,/h,=V,, we obtain a simple instability
criterion

2V, 0/V > 1. (12)

Equation (12) gives a value of threshold «, since £, ~ a. For
a<a,, no instability occurs, and the modulation wavelength
diverges for o — «,.. Far away from the threshold, we neglect
7 and obtain for \(g)

N =g\ V= (1+ 8)g%2 + 0(g). (13)

The optimal wave number ¢" is given as

g ~ NGV, ~ a. (14)

Figure 2 shows the solution to Eq. (13), with the parameters
extracted from the corresponding one-dimensional steady-
state problem of Egs. (7) and (8). One sees that Eq. (13)
gives the correct description for small g. The inset to Fig. 2
shows the dependence of optimal wave-number ¢* vs @, ob-
tained by the numerical linear stability analysis of the soliton
solution. It shows an almost linear decrease of ¢* with «
consistent with Eq. (14). For very small «, the plot indicates
that ¢*—0 at a— a,, consistent with Eq. (12). From the
qualitative point of view, the transverse instability of a planar
front is caused by the following mechanism: local increase of
soliton mass results in the increase of its velocity and, con-
sequently, “bulging” of the front. Since the bulge “rolls” for-
ward, i.e., below the level of the avalanche, the granular fluid
flows toward the bulge, further draining the trailing regions.
To study the evolution of the avalanche front beyond the
initial linear instability regime, a fully two-dimensional nu-
merical analysis of Egs. (2) and (3) was performed. Integra-
tion was performed in a rectangular domain with periodic
boundary conditions in the x and y directions. The number of
mesh points was up to 1200 X600 or higher. As an initial
condition, we used a flat state h=h, with a narrow stripe i
=hy+2 deposited along the y direction. To trigger the trans-
verse instability, a small noise was added to the initial con-
ditions. The initial conditions rapidly developed into a quasi-
one-dimensional solution described by Eq. (6). Due to the
periodicity in the x direction, the soliton could pass through
the integration domain several times. It allowed us to per-
form analysis in a relatively small domain in the x direction.
The transverse modulation of the soliton leading front was
observed after about 100 units of time for the parameters of
Fig. 3. The modulation initially grows in amplitude with the
typical wave number ¢ close to ¢* (see Fig. 2), eventually
coarsens and leads to the formation of large-scale finger
structures, consistent with the experimentally observed
shapes [see Fig. 3(a)]. No saturation of finger length was
found either numerically or experimentally at later stages.
Some of the model parameters (critical slopes ¢, pa-
rameters &, 8) can be obtained from the experimental stabil-
ity diagram, see [8]. However, the model does not provide an
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FIG. 3. (a) Typical fingering patterns for underwater avalanches;
[4] (b) and (c) Gray-coded images of h(x,y) (white corresponds to
larger &), with (b) =300 and (c) t=500 units of time. Domain size
is 600 units in x and 450 units in the y direction, the only part of
domain in the x direction is shown. Parameters: 6=1.16, a«=0.14,
B=2, and initial height hy=2.285.
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explicit expression for « due to the dependence of granular
viscosity v on other external parameters (e.g., local pressure,
see [8]). Rough estimates of « can be extracted from the flow
rules in Ref. [1], which gives the relation between depth-

average velocity (V) and height h: (V)/thgzﬁh/hswpﬁp)
+const, where dimensionless material constant is 8= 1 for
sand and B~0.2 for glass beads. Flux of grains is J=/h(V)

~ B\gh¥?/ hgop(@). To compare with the flux expression in
Eq. (2), we write for the fully fluidized state (A=1): J

~Bgh’/ hzt/fp( ¢). Since the typical time 7, is on the order of
collision time vd/g, after rescaling x—x/d, h—hld, t

—t/ Ty WE obtain in the dimensionless form the estimate for

a=~Pld/hy,,(¢)P. Since hy,,— with the decrease of
angle ¢, the instability should disappear for smaller angles,
which is verified experimentally. The analysis predicts that
the instability is suppressed for the case of small rheological

parameter 3. Thus, it would be crucial to perform more ex-
periments on many different granular materials (like glass
beads).

In conclusion, two important questions remain: how to
relate quantitatively theory with experiment and how to un-
derstand qualitative differences between smooth glass beads
and rough sand. The fingering patterns exhibit similarities
with those existing in flows of thin liquid films [12]. How-
ever, the mechanisms are different: in liquid films they are
controlled by the surface tension, whereas in our case, the
surface tension plays no role.
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